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ABSTRACT

Effective radiative forcing (ERF) is calculated as the flux change at the top of the atmosphere after allowing

rapid adjustments resulting from a forcing agent, such as greenhouse gases. Rapid adjustments include

changes to atmospheric temperature, water vapor, and clouds. Accurate estimates of ERF are necessary in

order to understand the drivers of climate change. This work presents a new method of calculating ERF

using a kernel derived from the time series of a model variable (e.g., global mean surface temperature) in a

model-step change experiment. The top-of-atmosphere (TOA) radiative imbalance has the best noise tol-

erance for retrieving the ERFof themodel variables tested. This temporal kernelmethod is comparedwith an

energy balance method, which equates ERF to the TOA radiative imbalance plus the scaled surface tem-

perature change. Sensitivities and biases of these methods are quantified using output from phase 5 of the the

Coupled Model Intercomparison Project (CMIP5). The temporal kernel method is likely more accurate for

models in which a linear fit is a poor approximation for the relationship between temperature change and

TOA imbalance. The difference between these methods is most apparent in forcing estimates for the rep-

resentative concentration pathway 8.5 (RCP8.5) scenario. The CMIP5 multimodel mean ERF calculated for

large volcanic eruptions is 80%of the adjusted forcing reported by the IPCCFifthAssessment Report (AR5).

This suggests that about 5% more energy has come into the earth system since 1870 than suggested by the

IPCC AR5.

1. Introduction

Accurate radiative forcing estimates are necessary to

understand the global energy budget and future climate

responses to anthropogenic and natural emissions. Esti-

mating the radiative forcing that is driving climate change

is difficult because of the complex climate response to the

many individual forcing agents. It is currently impossible

to directly measure the globally averaged radiative

forcing. Observations from space measure the top-of-

atmosphere (TOA) radiative imbalance, which includes

both the forcing andEarth’s thermal response.Models are

used to calculate the radiative forcing, with several dif-

ferent definitions of forcing based on the modeling

method employed.

Chapters 7 and 8 of the IPCC Fifth Assessment Re-

port (AR5) (Boucher et al. 2013; Myhre et al. 2013)

include a thorough discussion of the different radiative

forcing (RF) definitions and the methods used to cal-

culate them. Several methods to compute RF have been

proposed, which utilize models of varying complexity.

The instantaneous and adjusted forcing has traditionally

been computed offline with radiation codes using a

model or climatological atmosphere and the forcing

perturbation. The instantaneous forcing keeps all fields

constant (except the forcing agent), while other forcing

definitions allow for the atmosphere to adjust. The

‘‘adjusted forcing’’ allows only stratospheric tempera-

ture adjustments. While informative, these definitions

make it difficult to estimate RF of complicated climate
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processes such as aerosol indirect effects. The fixed sea

surface temperature (SST) technique was developed to

allow these complex responses to be considered in the

forcing estimate (Shine 2003; Hansen et al. 2002). In

addition, this method allows more rapid adjustments to

respond to the forcing. Rapid adjustments respond be-

fore global mean temperatures change and include

changes to atmospheric temperature, water vapor, and

clouds (IPCC 2013). This method calculates the forcing

by differencing two climate model results with fixed sea

surface temperatures after they have run to equilibrium.

The forcing agent is the only change between the model

runs. None of these techniques, however, allow the

forcing to be calculated in a transient climate simulation.

This makes it difficult to compute the RF differences

between model runs and limits the analysis that can be

carried out (e.g., estimating Earth’s energy balance

in models).

Gregory et al. (2004) developed a method to calculate

the RF and climate feedback parameter that relies on a

linear forcing–response relationship. It was noted that

the relationship between the TOA radiative imbalance

N and global mean surface atmospheric temperature

change DT in a step-change CO2 simulation was ap-

proximately linear,

N5F2aDT , (1)

and the slope obtained by regressing N against DT gives

an estimate of the climate feedback parameter a. The y

intercept gives an estimate of the radiative forcing F.

Hansen et al. (2005) suggested that a regression length

of 10–30 yr was needed to retrieve a forcing that was

consistent with the effective forcing in the fully coupled

GISS ModelE (used in CMIP3). Andrews et al. (2012)

applied this regression to the database from phase 5 of

the Coupled Model Intercomparison Project (CMIP5)

and found that 150-yr regressions retrieved an initial

forcing that was consistent with the values calculated

using fixed SST simulations.

Forster and Taylor (2006) applied the linear rela-

tionship in Eq. (1) to transient model values ofN andDT
to estimate a time series of RF. This assumes that the

climate feedback parameter is constant during the

transient calculation. Usually a is estimated from step

change experiments using the same model. We refer to

this method of calculating RF as the energy balance

(EB) method below.

Numerous studies have shown that the assumption

of a constant feedback parameter is reasonable for short

time scales (;10–100 yr), whereas it breaks down on

longer time scales (Andrews et al. 2012; Forster et al.

2013; Williams et al. 2008; Hansen et al. 2005; Gregory

et al. 2004; Senior and Mitchell 2000). This is due to

climate feedbacks changing the relationship between

the global mean temperature and TOA imbalance on

long time scales. Thus, the retrieved feedback parameter

and initial forcing are dependent on the length of time

used in the regression.

We propose a newmethod of calculating the radiative

forcing in transient simulations using a temporal kernel

(TK) function derived from step change model calcu-

lations (e.g., 43CO2 experiment).We are using the term

temporal kernel to distinguish from other radiative

kernel methods used to calculate feedbacks (Soden et al.

2008; Shell et al. 2008). We demonstrate that this TK

method is consistent with the energy balancemethod for

calculating forcing but does not have the same biases. In

particular, it does not assume a constant climate feed-

back parameter.

There is not a consensus on the term for the radiative

forcing calculated from transient simulations. Histori-

cally, adjusted forcing has referred to forcing in which

the only adjustments were to stratospheric temperatures

(IPCC 1990; Hansen et al. 1997). Others (Andrews et al.

2012; Forster et al. 2013) used the term adjusted forcing

to describe the forcing calculated with the EB method,

which allows for other rapid adjustments including wa-

ter vapor and clouds. Given the consistency between the

initial forcing of the EB method and fixed SST method

of calculating forcing, we follow the example from the

IPCC AR5 (IPCC 2013) and use the term effective ra-

diative forcing (ERF) to indicate the forcing calculated

in transient climate simulations by the EBmethod or the

TK method described below.

In this paper we apply the EB method to the CMIP5

output and quantify the effects of using different length

regressions. We also present a new temporal kernel

method to calculate ERF and compare it with the EB

method, assessing the strengths and weaknesses of each.

Finally, we use these methods to calculate the forcing of

volcanic eruptions and consider their impact on the

global energy budget.

2. CMIP5 processing

To estimate the ERF in the CMIP5 models [described

in Taylor et al. (2012)], we first need to remove drifts and

offsets from the CMIP5 model output. Monthly output

of the models’ first realization (r1i1p1) is analyzed for

each available CMIP5 model as of January 2015. Fluxes

for the solar downwelling, solar upwelling, and long-

wave upwelling at the TOA (CMIP5 parameters rsdt,

rsut, and rlut, respectively) are used to calculate the

N. The CMIP5 models are often subject to drift (Forster

et al. 2013; Gupta et al. 2013), which is necessary to
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remove. We use the preindustrial control (piControl)

simulations to reduce model drifts using the same time

period as the historical simulations. Most models specify

the year the historical simulation is branched from the

piControl simulation; otherwise the beginning of the

piControl is used. There appears to be very little drift

in N in the piControl simulations; however, there is

substantial offset. We subtract the mean TOA im-

balance in the first 10 years of the historical run from

the historical and abrupt43CO2 simulations, thus

making N an anomaly to the beginning of the histor-

ical simulation. We remove the linear trend in tem-

perature in the piControl from the historical and

abrupt43CO2 temperatures. The temperatures at the

start of some historical simulations are offset from the

piControl simulations, so we also subtract the mean

from the first 10 years of the historical simulation, thus

making temperatures anomalous to the start of the

historical simulation. Similarly, we remove the linear

drift from the piControl and the offset from the first 10

years of the historical simulation for the ocean heat

content.

We have chosen to make the output variables [N,

temperature (T), and ocean heat content (OHC)]

anomalies compared to the beginning of the historical

simulation as opposed to the preindustrial control. This

was done intentionally because in many models there

is a discrepancy between the beginning of the historical

simulation and the preindustrial control. Some of these

discrepancies are due to incorrect labeling of the branch

year. The inconsistencies in temperature are up to a half

of a degree, which is substantial especially when calcu-

lating integrated quantities. For consistency between

models and to include themostmodels possible, we have

made all output variables anomalous to the start of their

historical simulation. Since not all of the models have

the same start date for their historical simulations, later

in the paper we report the forcing relative to 1870–80.

3. Energy balance method

Following the method of Forster et al. (2013), we com-

pute the forcing time series of the CMIP5 historical simu-

lations using the EB method. We use the abrupt43CO2

simulation from each model to estimate the climate

feedback parameter using Eq. (1). Because of the non-

linearity in the relationship between TOA radiative

imbalance and global mean surface temperature change,

the number of years used in the regressions has a sub-

stantial (up to 20%) effect on the retrieved climate

feedback parameter and thus the radiative forcing. We

compare climate feedback parameters and initial forcing

using regressions of 20 and 150 yr in Fig. 1. The length of

regression that is most consistent with the fixed SST

forcing is model dependent. Of the seven models with

fixed SST ERFs calculated by Andrews et al. (2012),

three are more consistent with a 20-yr regression, one is

more consistent with a 150-yr regression, and three are

between the two regressions. We find that longer re-

gressions are influenced by the nonlinear relationship

between temperature and TOA radiative imbalance and

estimate a smaller climate feedback parameter and ini-

tial ERF. Shorter regressions estimate larger climate

feedback parameters and initial ERF and have larger

uncertainty. The multimodel mean feedback parameter

and standard deviation is 1.35 6 0.35, 1.21 6 0.32, and

1.12 6 0.31Wm22K21 for the 20-, 100-, and 150-year

regressions, respectively. The error bars indicate the

1-sigma uncertainty of the regression. Our 100-yr re-

gressionmean feedback parameter is closest to the value

adopted by Murphy et al. (2009), 1.256 0.5Wm22K21,

based on annual and interannual regressions of ERBE

FIG. 1. Scatterplot of the (left) a and (right) F0, retrieved with 20- and 150-yr regressions. Error

bars represent 1s uncertainties from the regressions. The solid line has a slope of 1.
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and CERES data. However, their value is consistent

with all three estimates from the CMIP5 multimodel

mean. While most of the abrupt43CO2 experiments are

run for only 150 years, the few that run for longer

indicate a continued flattening of the relationship of N

and DT and thus even smaller retrieved feedback pa-

rameters and initial forcings with longer regressions.

This section replicates some of the work in Andrews

et al. (2012) and Forster et al. (2013). The main differ-

ence between our analysis and theirs is that we test

different regression lengths on the retrieved parameters.

The initial forcing and feedback parameters we calcu-

late using the 150-yr regressions are generally within a

few percent of those calculated by Andrews et al. (2012)

and Forster et al. (2013) (see Table S1 in the supple-

mental material). The slight differences are due to the

slightly different processing method we used to remove

model drift and offsets. These different processing

methods result in differences greater than 10% in esti-

mated parameters in only two models, both of which

have large differences between the temperature in the

piControl simulation and the temperature at the start of

the historical simulation. Our multimodel-mean feed-

back parameter and initial forcing is within 1% of that

calculated by Forster et al. (2013).

4. Temporal kernel method of estimating forcing

We consider an alternative method to estimate the

forcing that is based on a temporal kernel method. Good

et al. (2011, 2013) created a simple model to calculate

climate properties (surface temperature, precipitation,

ocean heat uptake, etc.) given the time series of the

forcing and the values of those properties from a step

change experiment (e.g., abrupt43CO2). In their model,

the climate property y in year i is equal to the convolu-

tion of responses to all previous annual forcing. Good

et al. (2011, 2013) writes this finite convolution as the

first of the following sums:

y
i
5 �

i

j50

x
j

F
i2j

F
0

5 �
i

j50

x
i2j

F
j

F
0

, (2)

where we have rewritten the summation in the second

version. Here, yi is the climate variable to be calculated

in year i, xi2j is the same climate property in the control

simulation (abrupt43CO2), Fj is the forcing in year j,

and F0 is the initial forcing in the control (step change)

experiment. We have chosen F0 to be the initial forcing

retrieved using regressions from the EB method. Thus,

it is also dependent on the number of years used in the

regression (see Fig. 1). We do this so that the forcing

magnitudes are equivalent and the two methods can be

easily compared. However, one could use the forcing

estimates from fixed SST calculations or the TOA

imbalance in the first year of the abrupt43CO2

simulation.

Good et al. (2013) applied this equation as a compu-

tationally efficient way of exploring the response to

forcing scenarios that have not been run by GCMs. This

model is unique in that it can retrieve a range of vari-

ables based on their response in a control simulation

and a given forcing time series. Good et al. also show

that the method generally works better for globally av-

eraged temperature than for precipitation.

We are interested in using the above relationship and

equation to calculate the radiative forcing in an experi-

mental run given the variable time series in the experi-

mental and control run. To do this we note that Eq. (2)

can be written as a matrix equation

Y5XF/F
0
, (3)

where Y and F are vectors and F0 is the forcing in the

CO2 step-change experiment. The term X is a matrix

with elements defined as follows:

X
i,j
5

(
0, for j. i

x
i2j

, for j# i
. (4)

Thus, by solving the linear system of equations or invert-

ing the matrix X we can retrieve the following forcing:

F5F
0
X21Y . (5)

One issue with using amatrix inverse is that it can induce

noise in the retrieved forcing. The amount of noise is

dependent on the choice of variable used to construct

matrix X. We explore using three control variables to

retrieve the forcing: temperature change DT, TOA ra-

diative imbalance N, and ocean heat content change

DOHC. To reduce the noise in the retrieval we fit a

smooth function to the step change response for each

variable. This fit is then used to construct the rows of the

matrix X above. Another benefit of fitting the variable is

that we can extend the time series beyond the length of

the control experiment by extrapolating the fit. This was

not necessary for the historical simulations but was for

many models for representative concentration pathway

8.5 (RCP8.5) simulations. The variable N is well fit

using a double exponential of the form

N5Ae2t/t1 1Be2t/t2 , (6)

while DT and DOHC are well fit using the form

DT or DOHC5A(12 e2t/t1 )1B(12 e2t/t2 ) , (7)
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whereA andB are amplitudes, t is time, and t1 and t2 are

time coefficients representing the different response

times of the variable to the forcing. Examples of theN

and DT in the abrupt43CO2 GFDL-ESM2M simula-

tion and their fits are shown in Fig. 2. The best fit forN

uses values for A, t1, B, and t2 of 2.32, 340, 3.42, and 5.8,

respectively. The best-fit coefficients will be different for

every model. The mean values for A, t1, B, and t2 of the

CMIP5 models are 2.6, 274, 3.5, and 5.8 for N.

We explore the ability of the TK method to retrieve

the forcing using different control variables in Fig. 3 with

the following approach. First, we apply the forward

kernel method (Good et al. 2013) to the GHG forcing

fromMeinshausen et al. (2011) (red lines in Fig. 3, right)

to retrieve theDT,N, andDOHC time series (solid black

lines in Fig. 3, left).We then added autocorrelated noise,

first-order autoregressive [AR(1)] model with autocor-

relation 0.7 and amplitude 0.012 multiplied by the

maximum of the variable time series, to the variable

time series (dashed lines in Fig. 3, left). This simulates

natural variability in these climate variables. We then

apply our TK method to the time series of each variable

(with added noise) to retrieve the forcing. The kernel

used in Fig. 3 is calculated using parameters from the

GFDL-ESM2M abrupt43CO2 simulation. The re-

covered GHG forcing time series (black lines in Fig. 3,

right) is plotted with the original GHG forcing from

Meinshausen et al. (2011). Note that the retrieved forc-

ing would be equal to the original forcing if not for the

presence of the added noise. The known forcing is re-

covered most accurately when using N to populate the

kernel used in Eq. (5). Thus, we will use the TOA im-

balance as our control variable to retrieve forcing time

series in transient experiments in the rest of the paper. The

TOA imbalance likely returns the best forcing because of

the shape of the response. TheTOA imbalance has a large

fast response and small slow response that decreases with

time (Fig. 2, left). Alternatively, surface temperature has

an opposite response in which the response to a change in

forcing grows with time (Fig. 2, right). This growth am-

plifies the noise when applying the inverse [Eq. (5)].

The TK method of calculating ERF is not biased by

the nonlinearity of the relationship between N and DT
that influences the EB method. To demonstrate this,

we used the EB and TKmethods to retrieve the forcing

time series from the abrupt43CO2 simulation. This

has the advantage that the forcing should be constant

throughout this simulation. In Fig. 4, we plot ERF

estimated from the CCSM4 abrupt43CO2 simulation

calculated using different methods and overlay the

linear trend lines. ERF estimated with the EB method

using a 150-yr regression to estimate a is quite flat over

the 150-yr time period of the control run except for the

first 10 years, which deviate substantially from zero and

are indicated by a box in the figure. This indicates that

the first 10 years are poorly fit with a linear regression of

150 years. ERF calculated with the EB method using a

20-yr regression to estimate a fit the first few decades

very well but soon deviate from the constant forcing.

There is significant slope, 0.66Wm22 century21, in the

ERF calculated using a 20-yr regression. The TKmethod,

however, retrieves nearly constant ERF over the entire

period of the abrupt43CO2 simulation. Not all models

have nonlinearity in their regressions, and thus the slope

is much less for some models. The multimodel mean

slopes for the 150- and 20-yr regression EB method

forcing are 0.088 and 0.418Wm22 century21, respectively.

The same slopes for the TK method are 20.025 and

20.028Wm22 century21. This demonstrates the supe-

riority of the kernel method for this metric.

FIG. 2. (left) The TOA imbalance and (right) temperature change time series in the

GFDL-ESM2M abrupt43CO2 simulation fit with the double exponential in Eqs. (6) and (7),

respectively.
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It should be noted that the TK method requires an

estimate of the forcing in the control simulation, in this

case the abrupt43CO2 simulation. This estimate can

come from many different sources, including the im-

balance from a fixed SST 4 3 CO2 simulation, the im-

balance in the first year of the coupled 4 3 CO2

simulation, or the y intercept of the imbalance versus

temperature regression. The ERF calculated from the

TK method will scale linearly with this choice of F0. We

have chosen to use the y intercept from the imbalance

versus temperature regression since this corresponds to

the ERF calculated by the energy balance method. That

way we can compare the two methods directly. The

forcing time series from the TK method in Fig. 4 is

identical in the two plots except for the scaling.

5. Estimates of effective radiative forcing

One downside to the TKmethod is the larger noise or

variability compared with the EB method. The TK

method is sensitive to variation inN, which is larger than

the variation in N 1 aDT to which the EB method is

sensitive. We compare the variability of these methods

in Fig. 5. Themultimodelmeans using 100-yr regressions

to estimate a and F0 are the solid (TK) and dashed (EB)

lines, respectively. The difference in the means is small

FIG. 3. The noise in the ERF calculated with the TK method is highly dependent on the

variable used in the kernel. Of the three variables compared, (top) surface temperature,

(middle) TOA imbalance, and (bottom) OHC, the TOA imbalance displayed the highest

tolerance to noise. See text for details.
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compared to the spread in the individual models. The

light gray shaded region in Fig. 5 shows the 5th–95th

percentile in the model-retrieved ERF calculated with

the TKmethod for the 26 models that had output for the

piControl, historical, and abrupt43CO2 simulations.

The dash–dotted line represents the same percentiles for

the EB method. The dark shading and dotted lines are 2

times the standard error of themeans for the TK and EB

methods, respectively. The standard error of the means

is calculated from the spread of the means of 1000 iter-

ations of Monte Carlo–sampled model ERF with

replacement.

In Fig. 6 we show the multimodel mean ERF using the

CMIP5 historical (and RCP8.5 after 2006 where avail-

able) simulations computedwith theTKandEBmethods.

We also show estimates of ERF from Meinshausen et al.

(2011) and TableAII.1.2 inAR5 (IPCC2013). To directly

compare the CMIP5 models with the IPCC AR5 and

Meinshausen et al. we plot the forcing in Fig. 6 relative

to 1870–80. Despite the biases in the EB method, the

two methods generally agree to within a few percent in

the multimodel mean retrieved ERF. The ERF from

Meinshausen et al. generally agrees better with both of

our retrieval methods than the IPCC estimates in AR5.

This is especially true during volcanic events (see below

for more discussion) but is also true during volcanically

quiescent periods (e.g., 1950–62). This is mostly due to

updated concentrations of forcing agents, especially

anthropogenic and stratospheric aerosol, between the

CMIP5 and publication of the IPCC AR5.

Between 1995 and 2015, a period of interest because it

spans the ‘‘hiatus’’ in global warming (Allan et al. 2014;

Smith et al. 2015; Trenberth and Fasullo 2013), the TK

method retrieves anERF that is on average 0.035Wm22

larger than the EBmethod. As shown earlier, the choice

of regression length will affect our estimates of ERF,

with shorter regressions resulting in higher ERF

estimates both for the EB and TK method. The TK

method is affected only because of the use of F0 in Eq.

(5). Between 1995 and 2015, the ERF calculated using

parameters from 20-yr regressions is about 0.2Wm22

larger than those calculated using parameters from

150-yr regressions (Fig. 6). This magnitude of forcing is

comparable to changes in stratospheric water vapor or

the background aerosol forcing that have been invoked

to partially explain the hiatus period (Solomon et al.

2010, 2011).

The large bias in the EB method displayed in the

CCSM4 output in Fig. 4 does not result in large differ-

ences in retrieved ERF in Figs. 5 and 6 for several rea-

sons. First, not all models have this bias, so the

multimodel mean reduces this effect. Second, assuming

the bias is linear as in Fig. 4, then the magnitude of the

bias in the EB method is proportional to the magnitude

of ERF and the time since ERF. The ERF in Fig. 4 from

the abrupt43CO2 experiment is much larger than the

FIG. 4. Forcing from the CCSM4 abrupt43CO2 simulation retrieved with the TK and EB

methods using parameters calculated from (left) 150- and (right) 20-yr regressions. A strong

bias is present in the EB retrieved forcing using 20-yr regressions.

FIG. 5. Estimates of variability and uncertainty in the retrieved

ERF from the two methods using parameters calculated from

100-yr regressions. The TK method ERF is more variable than the

EB method ERF.
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ERF in the historical simulation. Furthermore, in the

historical simulation, ERF is dominated by recent

changes, so the time for the bias to grow is short. Al-

though we do not see a large difference between the

forcing retrieval methods in the multimodel mean ERF

in the historical simulation, we expect to see larger dif-

ferences in individual models with larger nonlinearities,

longer simulations, and simulations with larger forcing.

We can calculate the bias in the EB method by

applying a linear model to the bias and using the abrupt43
CO2 experiment to get the constant of proportionality. If

the total ERF is simply the summation of the incremental

ERF every year and the bias is proportional to the mag-

nitude of the incremental ERF and the time since theERF,

then the total bias B can be written as follows:

B
i
5A�

i

j50

(i2 j)DF
j
. (8)

Here, Bi is the bias as a function of time step, DFj is the

incremental ERF in year j, and A is the amplitude. The

value of A can be calculated from the abrupt43CO2

simulation as the slope in Fig. 4 divided by the magni-

tude of ERF.

Figure 7 shows RCP8.5 simulations that extend out to

year 2300. There is much more divergence between the

retrieval methods (red and blue lines) than found in the

historical simulations. The bias calculated with Eq. (8) is

shown as the dotted lines. The largest bias in the models

presented is over 6Wm22 in year 2300 from CSIRO

Mk3.6.0. This model has a large nonlinearity in the re-

gression between N and DT in the abrupt43CO2 simu-

lation. Some models, such as the CNRM-CM5, have

very little nonlinearity and the calculation methods

return similar ERFs. We expect the calculated bias

added to the TK method ERF (bias plus TK is the

dashed line) to be equal to the EB method ERF (red

line). This expectation is upheld for the CSIROMk3.6.0

and MPI-ESM-LR models; however, in other models,

the bias is overestimated. In some models (e.g., GISS-

E2-H), the TK method actually retrieves a much larger

ERF than the EB method, counter to our expectations.

There are many possibilities for these discrepancies.

One possibility is that the climatic response to a qua-

drupling of CO2 might be different than the same

amount of forcing from other sources or greenhouse

gases. Also, the 4 3 CO2 simulations are generally run

for 150 years, after which we have to extrapolate the

imbalance to use the TK method. The climate may be

in a different state after 300 years of CO2 emissions and

our extrapolation may not be correct. Similarly, the

feedback parameter may change in unexpected ways

over hundreds of years.

The difference in retrieved ERF between these two

methods for different models indicates differing model

responses to ERF. For instance, models that do not have

large nonlinearity in their N and DT regressions likely

respond similarly under different climate states. How-

ever, models that have large nonlinearities, and thus

different ERF estimates with different methods, suggest

that the feedback mechanisms are very different in a

highly forced climate.

6. Volcanic conversion factor

The multimodel mean ERFs using both methods

generally agree to within a percent of each other and to

within 10% or better with that of Meinshausen et al.

(2011) and the AR5 (IPCC 2013) outside of volcanic

events (Fig. 6). However, volcanoes have substantially

more negative forcing in the AR5 estimates than those

of Meinshausen et al. and often our CMIP5 estimates.

For example, we retrieve 0.9Wm22 less (negative)

forcing than the IPCC AR5 estimate in 1992 from the

Mount Pinatubo eruption. To estimate the volcanic

forcing, the IPCC AR5 scales the global mean volcanic

stratospheric aerosol optical depth, originally from Sato

et al. (1993) and since updated, by a factor of225. This is

the conversion factor corresponding to the adjusted ra-

diative forcing (where only the stratospheric tempera-

tures are allowed to adjust) calculated by the GISS

ModelE (used in CMIP3) (Hansen et al. 2005). This is

slightly higher than the conversion factor (223) that the

GISS ModelE needed to estimate ERF (Hansen et al.

2005). We call the ratio of these two factors (and forcing

estimates) the rapid adjustment factor (RAF). For the

GISS ModelE used in Hansen et al. (2005), they

FIG. 6. ERF estimates from 1870 to 2015 retrieved from the TK

and EBmethods compared to Meinshausen et al. (2011) and IPCC

AR5. The blue lines are calculated using parameters from 20-yr

regressions, while the red lines are calculated using parameters

from 150-yr regressions.
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calculate a RAF of 0.92. This indicates that volcanoes

have a positive rapid adjustment forcing in the GISS

ModelE. Meinshausen et al. calculated the ERF by

scaling the volcanic stratospheric aerosol optical depth

by223.5 and thenmultiplying by a factor of 0.7 tomatch

the temperatures in their simple model to observed

historical temperatures. The factor of 0.7 compensated

for the excessive response due to volcanic aerosol in

their simple model. Meinshausen et al. (2011) are es-

sentially reporting ERF with a RAF for volcanic aero-

sols of 0.66, which explains why their values for volcanic

forcing are substantially smaller than the IPCC AR5

estimates.

It is interesting to note that the CMIP5 model mean

ERF using both calculation methods are similar to those

of Meinshausen et al. (2011) for the Mount Pinatubo

eruption. However, Fig. 6 shows that other volcanic

events are more consistent with the IPCC AR5 forcing.

We calculate the RAF in each model due to volcanic

aerosol with the following method. We isolate each

eruption by removing a line fit to 3 years before the

eruption and 5–8 years after the eruption and total

the remaining ERF. Then we use the ratio of the in-

tegrated ERF to the integrated volcanic aerosol optical

depth from the GISS website (http://data.giss.nasa.gov/

modelforce/strataer/). This ratio represents the conver-

sion factor needed between volcanic aerosol optical

depth and effective radiative forcing for each model. By

dividing our calculated conversion factors by the con-

version factor for adjusted forcing (225), we retrieve the

RAF due volcanic aerosol for eachmodel. Figure 8 shows

the yearly averaged aerosol optical depth for the Mount

Pinatubo eruption and the ERF divided by225 for each

model and retrieval method. The model RAFs for each

method are reported in parentheses following the

models. For theMount Pinatubo eruption, we calculate a

multimodel meanRAF of 0.7 (using 100-yr regressions to

estimate a and F0), which is substantially lower than the

Hansen et al. (2005) value of 0.91 and more consistent

with the value found by Meinshausen et al. (2011). Indi-

vidual models may have substantial differences up to 0.35

in RAF as a result of noise in the calculated forcing and

removal of the background trend. However, the multi-

model mean RAF between these methods is surprisingly

similar. Note that observed aerosol optical depth (AOD)

peaks in 1992, while some models have ERF peaking in

1991, the year Mount Pinatubo erupted.

We repeated the analysis for the five largest volcanic

events since 1880 and plot the retrieved RAF averaged

over both methods for each model and volcano in Fig. 9,

FIG. 7. ERF and bias [see Eq. (7)] in the historical and RCP8.5 simulations retrieved with the TK and EB methods using parameters

derived from 20-yr regressions. See the supplementary material for plots using 150-yr regressions.
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along with the mean and standard deviation for each

volcano. There is considerable scatter in the retrieved

RAF for each volcanic eruption as a result of eruption

size, location, and degree of temporal isolation of each

eruption from the others. The different eruptions could

have different climate responses and thus RAFs. How-

ever, because the standard deviations overlap in this

analysis, the mean RAFs are statistically consistent be-

tween the eruptions. We have not found any evidence

that the size or location of an eruption affects the RAF.

We plot the models in order of increasing Krakatoa

RAF along with trend lines. All trend lines slope up,

indicating that models with a large Krakatoa RAF also

have higher RAFs for other eruptions but with low r2

values. The r2 values indicate the coherence between the

RAFs in the individual models. The lack of coherence

between the eruptions indicates that the uncertainty

within a given model retrieval is greater than the un-

certainty betweenmodels (i.e., theRAF of theKrakatoa

eruption does not predict much of the RAF of another

eruption for a given model).

We calculate a weighted mean volcanic forcing RAF

of 0.80 using the total globally averaged aerosol optical

depths from each eruption as weights. This is smaller

than the 0.92 calculated from the GISS ModelE forcing

from Hansen et al. (2005). Since volcanic eruptions are

transient events, this does not affect future projections

of the ERF. However, this does affect estimates of the

cumulative energy that has come into the earth system.

The CMIP5 multimodel mean volcanic forcing RAF of

0.8 leads to a difference in the integrated forcing be-

tween 1870 and 2012 of 8 3 1022 J just from the five

largest volcanic events compared with the IPCC AR5.

Our analysis suggests that about 5% more energy has

FIG. 8. Radiative forcing estimates of the Mount Pinatubo eruption isolated for each model. The integrated

forcings are scaled to the observed AOD and used to retrieve the volcanic aerosol RAFs, which are shown in

parentheses after the models. (Acronyms are available at http://www.ametsoc.org/PubsAcronymList).

FIG. 9. Retrieved rapid adjustment factor (RAF) for each model and volcanic event sorted by

the RAF of the Krakatoa eruption.
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come into the earth system between 1870 and 2012 than

suggested by the IPCC.

7. Conclusions

We have explored a new temporal kernel (TK)

method to compute the effective radiative forcing

(ERF) in transient simulations using an extension of the

step-response method of Good et al. (2011, 2013). In

addition, we have compared this method to an energy

balance method (Forster and Taylor 2006) to compute

ERF. Both methods allow the estimation of the ERF in

transient simulations using only output from those simu-

lations (along with control simulations needed to estimate

needed inputs). In general these methods agree well, but

they have different advantages and disadvantages.

The TK method takes the forward model of Good

et al. (2011, 2013) that was developed to predict model

response based from a forcing time series and inverts it

to predict the forcing time series. In general, a step

change experiment with output for the variable used in

the inversion is needed to set up the model. The TK

method is sensitive to the choice of variable used to

derive the kernel and the noise in that variable in the

transient simulation. We have identified the TOA ra-

diative imbalance fit with a double exponential [see Eq.

(6)] as a good choice to create the kernel function. Using

the TOA imbalance, the TK method gives consistent

results with the EB method and has some improved

characteristics, including capturing the changing climate

sensitivity in long simulations better. The largest

downside to this method is that it is more susceptible to

interannual variability, which can be amplified by the

kernel compared with the EB method. However, this

method of calculating ERF is likely more accurate for

very long simulations of many centuries.

Regressions were originally used to calculate the

forcing of step change experiments, and later the energy

balance equation [see Eq. (1)] was directly applied to

transient simulations using N and DT. This method as-

sumes that the climate sensitivity parameter does not

change with time or forcing agent. Generally, the cli-

mate feedback parameter is computed using a step

change simulation from the same model using a re-

gression of Eq. (1). Thus, the EB method is sensitive to

the length of regression used to compute the climate

feedback parameter.

The length of the regression used to calculate the in-

puts (a and F0) for the two methods affects the energy

budget estimated from the models. Between 1995 and

2015, using a climate feedback parameter estimated

from the 20-yr regressions produces ERF estimates that

average 0.2Wm22 higher than ERF estimated with

150-yr regression feedback parameters. Using 100-yr

regressions retrieved a value for the climate feedback

parameter that is closest to Murphy et al. (2009), which

was derived from observations. The nonlinearity of the

relationship between surface temperature change and

TOA imbalance leads to biases in the retrieved forcing

with the EB method. These biases are very model de-

pendent. However, they usually grow with time, and

ERF estimations for long simulations of many centuries

can be greatly affected.

There are assumptions in these methods that lead to

uncertainty and inaccuracy in ERF estimates. First, both

methods assume that the climate responds uniformly to

any globalmean forcing, regardless of the type of forcing

agent, state of the climate system, or location of the

forcing. Forcing due to aerosols, land-use changes, solar

radiation, etc. will have a different temperature and

imbalance response than CO2. CO2 is the dominant

forcing agent currently and in future scenarios; however,

this assumption still leads to uncertainty in our ERF

estimates. The TK method may be improved by com-

bining step change experiments from other forcing

agents or using efficacy estimates from Hansen et al.

(2005). However, this is beyond the scope of this project,

which is to introduce and test the TKmethod against the

canonical energy balance method for estimating forcing

in transient simulations. Second, the TK method as-

sumes that the change in ERF in any given year can be

combined linearly with previous and future ERF

changes to estimate a response. Finally, both methods

assume that the forcing response is the same for all fu-

ture and past climate states as it is in the step change

experiment. It is hard to quantify the effect of this as-

sumption, but it is likely to be more important in higher

RCP scenarios.

Other studies (such as Zhang and Huang 2014) have

used radiative kernels to investigate the spatial pattern

of forcing in CMIP5 models. The TK method described

here could also be used on each grid cell to calculate a

spatial map of the ERF; however, interannual variability

could lead to large uncertainties. This may still be a

valuable method for understanding regional forcing.

Both methods investigated have limitations for esti-

mating effective radiative forcing in transient simula-

tions, so we still need models to calculate their forcing

online as much as possible. Muchmore work needs to be

done to accurately derive and compare forcing across

models. The Radiative Forcing Model Intercomparison

Project (RFMIP), which is part of the suite of simula-

tions for phase 6 of CMIP (CMIP6), will be an important

next step toward this endeavor.

We also investigate the rapid adjustment factor

(RAF) of volcanic aerosol with our two ERF estimation
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methods. We calculate a CMIP5 multimodel mean RAF

of 0.8 for the five largest volcanic eruptions since 1880,

compared with Hansen et al. (2005) using GISSModelE

(0.9) and Meinshausen et al. (2011) (0.7). There is sub-

stantial variation in our calculated RAF between

models and between volcanic events, which makes it

difficult to draw robust conclusions. For instance, we do

not detect a significant difference in RAF between the

different eruptions, which might be expected based on

their different latitudes and sizes. One important result

of this analysis is that theCMIP5multimodelmeanRAF

for volcanic aerosol forcing suggests less negative forcing

during large eruptions than reported by the IPCC AR5.

This has implications for the global energy budget. Using

the RAF we compute for the CMIP5 multimodel mean,

we estimate that approximately 5% more energy has

come into the earth system since 1870 than reported by

the IPCC AR5.

The temporal kernel method for calculating ERF

is a new and useful tool that may demonstrate an

improvement on current methods to calculate effective

radiative forcing in transient climate simulations. This

method becomes particularly useful for future predic-

tions under high RCP scenarios where biases in the EB

method may become large.
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Corrigendum

ERIK J. L. LARSON

Chemical Sciences Division, Earth Systems Research Laboratory, NOAA, and Cooperative Institute for

Research in Environmental Sciences, University of Colorado, Boulder, Colorado

ROBERT W. PORTMANN

Chemical Sciences Division, Earth Systems Research Laboratory, NOAA, Boulder, Colorado

(Manuscript received and in final form 15 September 2016)

Themathematical description in section 4 of Larson and Portmann (2016) incorrectly uses

forcing in the equations when it should use delta forcing. Specifically this variable is used in

Eqs. (2), (3), and (5). Here, Fj, described as the forcing in year j, should be described as the

change in forcing between year j and j 2 1. The actual radiative forcing is the cumulative

summation of these changes. This error does not affect any results or conclusions from the

paper. It is simply an error in representing the equations in the manuscript.

The correct forms of Eqs. (2), (3), and (5), respectively, from Larson and Portmann (2016)

are
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The only difference is the change from F to DF, where DFj is the change in forcing between

year j and j 2 1. The forcing time series, F, is the cumulative summation of the changes in

forcing DF:
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